Tag Archives: QEMU

windows 10 KERNEL_SECURITY_CHECK_FAILED in qemu vm

I upgraded to a shiny new AMD Ryzen 3rd gen processer (Threadripper 3960x.) After doing so I could not boot up my Windows 10 gaming VM (it uses VFIO / PCI Passthrough for the video card.) The message I kept getting as it tried to boot was:


After reading this reddit thread and this one It turns out it’s a culmination of a few things:

  • Running Linux kernel greater than 5.4
  • Running QEMU 5
  • Using 3rd gen AMD Ryzen CPU
  • Using host-passthrough CPU mode

The problem comes with a new speculative execution protection hardware feature in the Ryzen Gen 3 chipsets – stibp. Qemu doesn’t know how to handle it properly, thus the bluescreens.

There are two ways to fix it

  • Change host-model from host-passthrough to epyc
  • Add CPU parameters to your Virtual Machine’s XML file instructing it to not use the stibp CPU feature.

Since I have some software that checks CPU model and refuses to work if it’s not in the desktop class (Geforce Experience) I opted for route #2.

First, check the qemu logs to see which CPU parameters your VM was using (pick a time where it worked.) Replace ‘win10’ with the name of your VM.

sudo cat /var/log/libvirt/qemu/win10.log | grep "\-cpu"

in my case, it was -cpu host,migratable=on,topoext=on,kvmclock=on,hv-time,hv-relaxed,hv-vapic,hv-spinlocks=0x1fff,hv-vendor-id=1234567890ab,kvm=off \

Copy everything after -cpu and before the last backslash. Then edit your VM’s XML file (change last argument to the name of your VM)

sudo virsh edit win10

Scroll down to the bottom qemu:commandline section (if it doesn’t exist, create it right above the last line – </domain>. Paste the following information obtained from the above log (ignoring the qemu:commandline lines if they already exist.) In my case it looked like this:

    <qemu:arg value='-cpu'/>
    <qemu:arg value='host,topoext=on,kvmclock=on,hv-time,hv-relaxed,hv-vapic,hv-

What you’re doing is copying the CPU arguments you found in the log and adding them to the qemu:commandline section, with a twist – adding -amd-stibp which instructs qemu to remove that CPU flag.

This did the trick for me!

proxmox 6 NVIDIA GPU passthrough fix

I upgraded to ProxMox 6.0 and to my dismay my Windows VM suddenly began receiving the dreaded Code 43 error. After much digging I finally found this post on the ProxMox forums which outlines what needs to happen.

In my case, all I needed to do was tweak my machine type. There is no GUI option to do this, so it had to be done in the command line:

qm set <VM_ID> -machine pc-q35-3.1

That was all it took!

The forum also suggested a few other things if that didn’t work. I didn’t end up needing them but I’ll put them here in case it’s helpful:

Add args to your VM config file:

args: -cpu 'host,+kvm_pv_unhalt,+kvm_pv_eoi,hv_vendor_id=NV43FIX,kvm=off'

Add a few options to the CPU line:

cpu: host,hidden=1,flags=+pcid,hv-vendor-id=proxmox

With the above settings I also discovered there is no need to have x-vga=on anymore. This allows you to have both the regular VM console and your graphics card if you so desire.

CPU Pinning in Proxmox

Proxmox uses qemu which doesn’t implement CPU pinning by itself. If you want to limit a guest VM’s operations to specific CPU cores on the host you need to use taskset. It was a bit confusing to figure out but fortunately I found this gist by ayufan which handles it beautifully.

Save the following into taskset.sh and edit VMID to the ID of the VM you wish to pin CPUs to. Make sure you have the “expect” package installed.


set -eo pipefail


cpu_tasks() {
	expect <<EOF | sed -n 's/^.* CPU .*thread_id=\(.*\)$/\1/p' | tr -d '\r' || true
spawn qm monitor $VMID
expect ">"
send "info cpus\r"
expect ">"


if [[ $VCPU_COUNT -eq 0 ]]; then
	echo "* No VCPUS for VM$VMID"
	exit 1

echo "* Detected ${#VCPUS[@]} assigned to VM$VMID..."
echo "* Resetting cpu shield..."

for CPU_INDEX in "${!VCPUS[@]}"
	echo "* Assigning $CPU_INDEX to $CPU_TASK..."
	taskset -pc "$CPU_INDEX" "$CPU_TASK"

Update 9/29/18: Fixed missing done at the end. Also if you want to offset which cores this script uses, you can do so by modifying  the $CPU_INDEX variable to do a bit of math, like so:

        taskset -pc "$[CPU_INDEX+16]"

The above adds 16 to each process ID, so instead of staring on thread 0 it starts on thread 16.