Category Archives: OS

Threadripper / Epyc processor core optimization

I had a pet project (folding@home) where I wanted to maximize computing power. I became frustrated with default CPU scheduling of my folding@home threads. Ideal performance would keep similar threads on the same CPU, but the threads were jumping all over the place, which was impacting performance.

Step one was to figure out which threads belonged to which physical cores. I found on this site that you can use cat to find out what your “sibling threads” are:

cat /sys/devices/system/cpu/cpu{0..15}/topology/thread_siblings_list

The above command is for my Threadripper & Epyc systems, which each have 16 cores hyperthreaded to 32 cores. Adjust the {0..15} number to match your number of cores (core 0 being the fist core.) This was my output:

cat /sys/devices/system/cpu/cpu{0..15}/topology/thread_siblings_list


Now that I know the sibling threads are offset by 16, I can use this information to optimize my folding@home VMs. I modified my CPU pinning script to take this into consideration. The script ensures that each VM is pinned to only use sibling threads (ensuring they all stay on the same physical CPU.)

This script should be used with caution. It pins processes to specific CPUs, which limits the kernel scheduler’s ability to move things around if needed. If configured badly this can cause the machine to lock up or VMs to be terminated.

I saw some impressive results spinning up four separate 8 core VMs and pinning them to sibling cores using this script. It almost doubled the rate at which I completed folding@home work units.

And now, the script:

#Properly assign CPU cores to their respective die for EPYC/Threadripper systems
#Based on how hyperthreads are done in these systems
#cat /sys/devices/system/cpu/cpu{0..15}/topology/thread_siblings_list

#The script takes two arguments - the ID of the Proxmox VM to modify, and the core to begin the VM on
#If running this against multiple VMs, make sure to increment this second number by half of the cores of the previous VM
#For example, if I have one 8 core VM and I run this script specifying 0 for the offset, if I spin up a second VM, the second argument would be 4
#this would ensure the second VM starts on core 4 (the 5th core) and assigns sibling cores to match

set -eo pipefail

#take First argument as which VMID to pin CPU cores to, the second argument is which core to start pinning to

#Determine offset for sibling threads
SIBLING_THREAD_OFFSET=$(cat /sys/devices/system/cpu/cpu0/topology/thread_siblings_list| sed 's/,/ /g' | awk '{print $2}')

#Function to determine number of CPU cores a VM has
cpu_tasks() {
	expect <<EOF | sed -n 's/^.* CPU .*thread_id=\(.*\)$/\1/p' | tr -d '\r' || true
spawn qm monitor $VMID
expect ">"
send "info cpus\r"
expect ">"

#Only act if VMID & OFFSET are set
if [[ -z $VMID  || -z $OFFSET ]]
	echo "Usage: <VMID> <OFFSET>"
	exit 1
	#Get PIDs of each CPU core for VM, count number of VM cores, and get even/odd PIDs for assignment
	VCPU_EVEN_THREADS=($(for EVEN_THREAD in "${VCPUS[@]}"; do echo $EVEN_THREAD; done | awk '!(NR%2)'))
	VCPU_ODD_THREADS=($(for ODD_THREAD in "${VCPUS[@]}"; do echo $ODD_THREAD; done | awk '(NR%2)'))

	if [[ $VCPU_COUNT -eq 0 ]]; then
		echo "* No VCPUS for VM$VMID"
		exit 1

	echo "* Detected ${#VCPUS[@]} assigned to VM$VMID..."
	echo "* Resetting cpu shield..."

	#Start at offset CPU number, assign odd numbered PIDs to their own CPU thread, then increment CPU core number
	#0-3 if offset is 0, 4-7 if offset is 4, etc
	for PID in "${VCPU_ODD_THREADS[@]}"
		echo "* Assigning ODD thread $ODD_CPU_INDEX to $PID..."
		taskset -pc "$ODD_CPU_INDEX" "$PID"

	#Start at offset + CPU count, assign even number PIDs to their own CPU thread, then increment CPU core number
	#16-19 if offset is 0,	20-23 if offset is 4, etc
	for PID in "${VCPU_EVEN_THREADS[@]}"
		echo "* Assigning EVEN thread $EVEN_CPU_INDEX to $PID..."
		taskset -pc "$EVEN_CPU_INDEX" "$PID"

UBUNTU 20.04 cloned VM same DHCP IP fix

I cloned an Ubuntu 20.04 VM and was frustrated to see both boxes kept getting the same DHCP IP address despite having different network MAC addresses. I finally found on this helpful post which states Ubuntu 20.04 uses systemd-networkd for DHCP leases which behaves differently than dhclient. As wickedchicken states,

systemd-networkd uses a different method to generate the DUID than dhclientdhclient by default uses the link-layer address while systemd-networkd uses the contents of /etc/machine-id. Since the VMs were cloned, they have the same machine-id and the DHCP server returns the same IP for both.

To fix, replace the contents of one or both of /etc/machine-id. This can be anything, but deleting the file and running systemd-machine-id-setup will create a random machine-id in the same way done on machine setup.

So my fix was to run the following on the cloned machine:

sudo rm /etc/machine-id
sudo systemd-machine-id-setup
sudo reboot

That did the trick!

For the systems that registered their hostnames under the wrong IPs, I had to take the following action for my Ubuntu 20.04 desktop as well as my Ubiquiti USG-Pro 4

Ubiquiti: Clear DHCP lease

clear dhcp lease ip <ip_address>

Ubuntu desktop: Flush DNS

sudo systemd-resolve --flush-caches

Folding@home opencl error fix

I decided to contribute my GPU on my Ubuntu-based system to the Folding@Home effort for COVID-19. I kept getting this error message for my NVIDIA GeForce GTX 1050 TI when I tried:

ERROR:WU00:FS00:Failed to start core: OpenCL device matching slot 0 not found, make sure the OpenCL driver is installed or try setting 'opencl-index' manually

I had the nvidia opencl packages installed but apparently missed something. I finally found on the folding at home forum what I was missing – ocl-icd-opencl-dev

sudo apt install ocl-icd-opencl-dev

After running the above command and restarting the FAHClient service, the GPU started folding. For science!

EDIT 5/6/2020: After a re-install I had the issue where the GPU wouldn’t show up at all. It addition to ocl-icd-opencl-dev, it looks like you also need nvidia-cuda-dev.

sudo apt install ocl-icd-opencl-dev nvidia-cuda-dev

create podman services with podman-compose

Podman is a fork of Docker that Redhat is using. I really liked docker-compose functionality; fortunately there is a podman-compose project which is more or less the same thing.

I now have a setup where each podman container is controlled by a systemd service, set to run on startup, with version controlled podman-compose files.

First, I installed podman-compose:

sudo curl -o /usr/local/bin/podman-compose
chmod +x /usr/local/bin/podman-compose

I then created podman-compose files (syntax identical to docker-compose) for each container. Here is one example (jackett.yml)

version: "2"
    image: linuxserver/jackett
    container_name: jackett
      - PUID=1000
      - PGID=1000
      - TZ=America/Boise
      - /mnt/storage/Docker/Jackett/config:/config
      - /mnt/storage/Docker/Jackett/downloads:/downloads
      - 9117:9117
    restart: unless-stopped

I then created a corresponding systemd unit file for each container:



# Compose up
ExecStart=/usr/local/bin/podman-compose -f /home/nicholas/podman/jackett.yml up

# Compose down, remove containers and volumes
ExecStop=/usr/local/bin/podman-compose -f /home/nicholas/podman/jackett.yml down -v


I then do a systemctl daemon-reload, and enable the service for startup:

sudo systemctl daemon-reload
sudo systemctl enable jackett


Why not create a single podman-compose file for all my services, instead of creating individual services for each container? I wanted to be able to clearly see log output for each container with journalctl -f -u <service name.> If you lump all your services in a single compose file, the output from each container gets all jumbled into that single service log. Separating out each container into its own service was more clean.

Podman no internet in container fix

I’ve started experimenting with CentOS 8 & Podman (a fork of Docker.) I ran into an issue where one of my containers needed internet access, but could not connect. After some digging I found this site which explains why:

I had to configure the firewall on the podman host to allow for IP masquerade:

sudo firewall-cmd --zone=public --add-masquerade --permanent

After running the above command, my container had internet access!

proxmox openvswitch bond

Recently I had to switch my Proxmox server which was using Linux bonds to using openvswitch. These are my notes:

Install openvswitch:

apt install openvswitch-switch

Configure openvswitch to bond interfaces and use VLANs using as an example:

allow-vmbr0 bond0
iface bond0 inet manual
	ovs_bonds enp4s0f0 eno1
	ovs_type OVSBond
	ovs_bridge vmbr0
	ovs_options bond_mode=active-backup

auto lo
iface lo inet loopback

iface eno1 inet manual

iface enp4s0f0 inet manual

allow-ovs vmbr0
iface vmbr0 inet manual
	ovs_type OVSBridge
	ovs_ports bond0 vlan50 vlan10

#Proxmox communication
allow-vmbr0 vlan50
iface vlan50 inet static
  ovs_type OVSIntPort
  ovs_bridge vmbr0
  ovs_options tag=50
  ovs_extra set interface ${IFACE} external-ids:iface-id=$(hostname -s)-${IFACE}-vif

#Storage network
allow-vmbr0 vlan10
iface vlan10 inet static
  ovs_type OVSIntPort
  ovs_bridge vmbr0
  ovs_options tag=10
  ovs_extra set interface ${IFACE} external-ids:iface-id=$(hostname -s)-${IFACE}-vif

List active interface:

ovs-appctl bond/show bond0

Update 3/14/2020

I realized that openvswitch won’t fail back over to the original slave once it comes back online. I couldn’t for the life of me find the equivalent of bond-primary syntax for openvswitch; however I did find this command:

ovs-appctl list-commands

which reveals this command:

bond/set-active-slave port slave

So you can manually fallback using this command:

ovs-appctl bond/set-active-slave bond0 enp4s0f1

chroot into encrypted drive

I foolishly went browsing in my EFI partition on my Ubuntu (Elementary OS) laptop and decided to delete the Ubuntu folder. This made my laptop unbootable. This was my procedure to bring it back to life:

Boot into Ubuntu Live CD / USB environment

Decrypt LUKS encrypted drive (

sudo fdisk -l
#Determine encrypted partition is /dev/nvme0n1p3 because it's the largest
sudo cryptsetup luksOpen /dev/nvme0n1p3 encrypted_device
sudo vgchange -ay

Mount encrypted drive & chroot (

sudo mount /dev/elementary-vg/root /mnt
sudo mount /dev/nvme0n1p2 /mnt/boot/
sudo mount /dev/nvme0n1p1 /mnt/boot/efi
for i in /dev /dev/pts /proc /sys /run; do sudo mount -B $i /mnt$i; done
sudo chroot /mnt
sudo grub-install

#end chroot & unmount
for i in /mnt/dev/pts /mnt/dev  /mnt/proc /mnt/sys /mnt/run /mnt/boot/efi /mnt/boot /mnt; do sudo umount $i;  done

proxmox bond not present fix

I really banged my head on the wall on this one. I recently decided to re-architect my networking setup in proxmox to utilize bonded network configuration. I followed this writeup exactly. The problem is it didn’t work.

I would copy the example exactly, only changing the interface name, and yet every time I tried to start the networking service I would get this lovely error:

rawdevice bond0 not present

I finally found on the Debian Wiki one critical line :

First install the ifenslave package, necessary to enable bonding

For some reason the ProxMox howtos don’t speak of this – I guess because it comes installed by default. I discovered, however, that if you install ifupdown2 it removes ifenslave. I had installed ifupdown2 in the past to reload network configuration without rebooting. Aha!

I re-installed ifenslave (which removed ifupdown2 and re-installed ifupdown) and suddenly, the bond worked!

Bond not falling back to primary intrerface

I had configured my bond in active – backup mode. I wanted it to prefer the faster link, but if there was a failure in that link it wouldn’t switch back automatically (thanks to this site for showing me the command to check:

cat /proc/net/bonding/bond0

I read again in Debian bonding wiki that I needed to add this directive to the bond:

        bond-primary enp2s0

Here is my complete working active-backup configuration, assigning vlan 2 to the host, and making enp2s0 (the 10gig nic) the primary, with a 1gig backup (eno1)

auto bond0
iface bond0 inet manual
        slaves enp2s0 eno1
        bond-primary enp2s0
        bond_miimon 100
        bond_mode active-backup

iface bond0.2 inet manual

auto vmbr0v2
iface vmbr0v2 inet static
        bridge_ports bond0.2
        bridge_stp off
        bridge_fd 0

auto vmbr0
iface vmbr0 inet manual
        bridge_ports bond0
        brideg_stp off
        bridge_fd 0

Fix proxmox iommu operation not permitted

In trying to passthrough some LSI SAS cards to a VM I kept receiving this error:

kvm: -device vfio-pci,host=0000:03:00.0,id=hostpci0,bus=ich9-pcie-port-1,addr=0x0,rombar=0: vfio 0000:03:00.0: failed to setup container for group 7: Failed to set iommu for container: Operation not permitted

I found on this post that the fix is to add a line to /etc/modprobe.d/vfio.conf with the following:

options vfio_iommu_type1 allow_unsafe_interrupts=1

then reboot the host. It worked in my case!

use zdb to remove pesky device from zfs pool

I had the following problem with a device in my pool:


        NAME                                            STATE     READ WRITE CKSUM
        storage                                         DEGRADED     0     0     0
          mirror-0                                      ONLINE       0     0     0
            WORKING_DISK_1  ONLINE       0     0     0
            WORKING_DISK_2    ONLINE       0   0     0
          mirror-1                                      DEGRADED     0     0     0
            WORKING_DISK_3  ONLINE       0     0     0
            replacing-1                                 DEGRADED     0     0     0
              PROBLEM_DISK  FAULTED      6     1     0  too many errors

However when I tried to replace the drive I got this message:

no such device in pool

I found here that you can use zdb to obtain the GUID of the problem device and replace it that way:

root@nas:~# zdb -l PROBLEM_DISK
failed to unpack label 0
    version: 5000
    name: 'storage'
    state: 0
    txg: 5675107
    pool_guid: 8785893899843624400
    errata: 0
    hostname: 'nas'
    top_guid: 9425730683443378041
    guid: 3449631978925631053
    vdev_children: 2
        type: 'mirror'
        id: 1
        guid: 9425730683443378041
        metaslab_array: 41
        metaslab_shift: 35
        ashift: 12
        asize: 4000782221312
        is_log: 0
        create_txg: 4
            type: 'disk'
            id: 0
            guid: 17168510556101954329
            path: 'WORKING_DISK_3'
            devid: 'WORKING_DISK_3_ID'
            phys_path: 'pci-0000:00:1f.2-ata-2'
            whole_disk: 1
            DTL: 14700
            create_txg: 4
            type: 'disk'
            id: 1
    ----->  guid: 3449631978925631053
            path: 'PROBLEM_DISK'
            devid: 'PROBLEM_DISK_ID'
            phys_path: 'pci-0000:00:1f.2-ata-4'
            whole_disk: 1
            DTL: 14699
            create_txg: 4
    labels = 1 2 3 

I used the guid of the problem disk, and all was well:

zpool replace storage 3449631978925631053 NEW_WORKING_DISK

worked instead of complaining the device I was trying to replace didn’t exist.